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Chapter 1

Summary

Considering whether a temporarily unattended bridge could be allowed, Maritime
Authorities wish to investigate whether sensor technology is available that, when
seconded by sophisticated computer algorithms, is able to provide outlook with the
same reliability and safety as that of the average human outlook.

This document report findings from a comparative study of human versus elec-
tronic outlook. Assessment of navigator’s outlook is based on measurements with a
wearable eye-tracker and areas of their visual attention are recorded on video. Simul-
taneously, a set of electro-optical sensors provides image-data as input to computer
algorithms that detect and classify objects within visual range.

Ambient light conditions on the bridge prevented eye-tracking to disclose which
objects on Radar and ECDIS screens caught attention of the navigator. The scope
of this investigation was therefore limited to focus on the navigator’s visual atten-
tion on objects. The report compares these eye-tracking measurements with object
recognition made by camera recordings in the visual spectrum and subsequent com-
puterized object classification.

The report deducts, from the observations of eye fixations, when the naviga-
tor became aware of a particular object. It analyses how the human observations
compare with those of the technology solution. On the technology side, the report
presents approaches to detection and classification, which appeared to be efficient
in coastal areas with confined passages. The quality of outlook in different ambient
light conditions is illustrated. The main findings are:

• Eye-tracking glasses were found useful to show fixations on objects at sea in
daylight conditions.

• The computer-vision algorithms detects objects in parallel, the human does so
sequentially, and the computer classifies objects in average 24 sec faster than
the navigator has a fixation on the object. The deep learning algorithm trained
in this study should, however, be improved to achieve better performance in
some situations.

• The time between object detection and passage of own ship is adequate for
making navigation decisions with both human and electronic outlook.
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6 CHAPTER 1. SUMMARY

• Low-light conditions (dusk and night) are effectively dealt with by Long Wave
InfraRed (LWIR) camera technology. LWIR shows objects as equally visible
at day and night.

• Colour information from cameras is necessary to assist decision support and
electronic navigation.

• A system for electronic outlook should employ sensor and data fusion with
radar, AIS and ECDIS.

• Decision support based on electronic outlook should include object tracking
and situation awareness techniques.

• Quality assurance and approval of machine learning algorithms for object clas-
sification at sea has unsolved issues. A standard vocabulary ought be available
for objects at sea, and publicly available databases with annotated images from
traffic in both open seas, near coast areas and rivers should be available in or-
der for authorities to assess quality or approve navigation support based on
machine learning methods.
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Abbreviations and acronyms

AIS Automatic Identification System for marine vehicles
CNN Convolutional Neural Net
ECDIS Electronic Chart Display and Information System
GNSS Global Navigation Satellite System
HFOV Horizontal Field of View
JAI Manufacturer of industry-grade cameras
LWIR Long Wave InfraRed (8 - 14 µm wavelength)
Mask R-CNN R-CNN network with segmentation dedicated
NIR Near InfraRed (800-1000 nm wavelength)
Radar RAdio Detection And Ranging system
R-CNN Region based CNN
RGB Red Green Blue color coding of digital image
RoI Region of Interest used in image analysis
Teledyne Dalsa Manufacturer of LWIR camera and others
Tobiir glasses Eye-tracking glass from Tobii AB, Sweden





Chapter 2

Introduction

Look-out for navigation is the task of observing various objects which can have an
impact on a ships planned route and maneuvering capabilities, for example other ves-
sels, buoys and land. If the outlook is a separate person on the bridge, observations
are reported to the officer in charge who decide any remedial actions. The look-out
is made using sight and aided by available technology such as radar, AIS and ECDIS
systems. Development within camera technology and computer vision algorithms
has provided an additional possible source for look-out. This report investigates the
quality of this “electronic outlook” and compares with human look-out.

A survey of maritime object detection and tracking methods was recently (2017)
published in the survey by [24], who emphasized that Radar, which is an IMO re-
quired instrument on merchant vessels, is sensitive to the meteorological condition
and the shape, size, and material of the targets. They emphasize that radar data
need to be supplemented by other situational awareness sensors to obtain safe nav-
igation and collision avoidance. Commercial electro-optic sensors are available for
several spectral ranges: visible (450-800 nm), near infrared, (NIR 800-950 nm) and
long wave infrared (LWIR 8-14 µm). [28] investigated detectability of objects at sea
seen from an aircraft in visible and LWIR spectral ranges.

A brief overview of the approach taken in this investigation was presented in [4].
This report first summarises the task of watchkeeping/lookout for navigation.

Chapter 3 describes how human outlook is observed through measurements where
a navigator wears eye-tracking glasses. Chapter 4 outlines the use of electro-optical
and other sensors to provide electronic means to replicate the human observation of
surroundings. Chapter 5 introduces to available technology for object detection and
classification at sea where image processing and machine learning techniques are
instrumental. Chapter 6 presents findings of this study from ferries in near-costal
and shallow water navigation. Chapter 7 discusses the results, their limitations
and perspectives, and Chapter 8 finally offers conclusions and outlines directions for
further research.
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Chapter 3

Outlook for navigation

The analysis of manual lookout/watchkeeping is based on a combination of observa-
tions on board several vessels in Danish waters. Camera recordings and mapping of
objects at sea were conducted on measurement campaigns during 2018. Eye tracking
measurements were conducted during the summer of 2018.

Background knowledge for this study include generic observations, made by the
FORCE Technology in Lyngby, on board a large number of vessels during the period
2000-2018. The generic experience also includes observations from ship simulator
exercises, as well as literature-based studies, [31], [33], and on general knowledge of
maritime human factors. Eye-tracking glasses have been used in simulator context
but the use on board a bridge seems to be a new undertaking.

3.1 Human outlook

The manual outlook serves several purposes: prevention of collision with other ves-
sels, safe and efficient navigation in the sea, avoiding grounding and collision with
either fixed or floating objects, optimal steering and manoeuvring in relation to
waves, wind and visibility, general observation of the sea, including observation of
not normal conditions like emergencies or pollution.

The look-out also involves an element of continuous self-monitoring of the ef-
ficiency of the look-out and adjustment when necessary, e.g.: in cases including
reduced visibility, rain, disturbing sun light, observe far away objects in binoculars,
stress condition or fatigue of the look-out.

Outlook is made by both sight and sound, which literally means that not only
the eyes are used, but also the hearing is active. Attention is made to maneuvering,
fog or emergency signals from other vessels and to relevant radio communication.

The outlook is just one among several tasks of the navigator on the bridge. Other
tasks that require attention include, observation of the condition of engines and
systems, handling of cargo and passengers, safety-related routines, communication
internally on board the vessel and with external parties, management of staff and
other administrative tasks, QA and documentation and handling of safety-critical
situations on board. These supplemental duties imply that the navigator needs to
share his/her attention among several tasks.
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12 CHAPTER 3. OUTLOOK FOR NAVIGATION

Figure 3.1: Screen-shot from eye tracking of the navigator onboard the Elsinore-
Helsingborg ferry M/S Pernille

Endogenous and exogenous driven visual attention

The look-out task involves both endogenous- and exogenous-driven activities.

Endogenous activities are visual attention controlled by the navigator himself on
his own initiative and based on relevant knowledge and experience, such as observing
navigational markings, sighting of land and watching out for other vessels.

Exogenous activities are those caused by an external event catching the attention
of the navigator. For instance, the sight of a vessel that the navigator has not been
looking for or signals by light, sound or radio. Everyday scenarios will typically be
a combination of endogenous and exogenous look-out activities.

As an example of the activity of endogenous controlled visual attention by the
navigator, look at the screen-shot in Figure 3.1.

In this case the ferry Pernille is crossing a traffic separation scheme in which
inbound traffic could be approaching from port side. The visibility (for both navi-
gator and radar) can easily be obscured by the Kronborg Castle headland, but the
navigator knows from experience that larger ships with considerable speed might
be approaching. Based on this experience the navigator keeps an eye on AIS in-
formation and on the headland area to stay prepared for possible traffic at port
side. The visibility of the ferry Pernille from other vessels is likewise obscured by
the same headland, thus making it a possible hazard to proceed without extra cau-
tion. The navigator’s visual attention is not drawn to the area by a concrete vessel
(which would have been an activity of exogenous visual attention) but directed there
based on his experience and anticipation, which is an activity of endogenous visual
attention.

When it comes to performing an outlook, it makes sense to distinguish between
two types, namely the pure observations that do not requiring action and observa-
tions that requiring action, e.g. to follow COLREGS and ultimately to prevent a
collision or grounding. The navigator’s actions are often seen as a combination of
several elements including signaling, steering and engine manoeuvres.
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The decision to act or not to act depends on the navigator’s interpretation of
the information stemming from these look-out related behaviours:

1. Repeated observations to determine if there is a risk of collision and if so taking
countermeasures

2. Repeated observations to determine if executed countermeasures (during 1)
above) have the desired effect

3. General visual observation (watching) of nothing in particular, but often fo-
cused on the direction of the vessel and abeam/passed in relation to the pro-
gression of the navigation

4. Exogenous visual attention triggered by something turns up, possibly in com-
bination with information on bridge instruments

5. Endogenous visual attention, i.e. the navigator expects upcoming, observable
objects using e.g. sea charts (buoys), radar or AIS.

The above unfolding of human outlook reveals the activity as complex and mul-
tifaceted. It is therefore generally accepted in the maritime domain, that there is no
unified, single, correct or “perfect” way to perform outlook. Rather there is an ac-
ceptable margin within which different navigator’s different behaviours can unfold,
while still fulfilling the purpose of a good-enough outlook.

3.2 State of art

In the maritime context, the use of eye tracking as means to examine the visual
attention of ship navigators is nothing new. At least not when it comes to the
use of eye tracking in simulation environments. [3] investigated the operators’ foci
of attention during simulated dynamic position operation. [2] examined the differ-
ence in attention-allocation comparing novice and expert navigators during use of
the Conning Officer Virtual Environment, a simulation system developed to train
shiphandling. [2] concluded a clear link between the experts’ superior shiphandling
performance and a “tight Attention-allocation pattern that focused only on the rel-
evant areas of interest. Novices’ Attention-allocation patterns were highly scattered
and irregular” (p. xviii). [22] and [27] focused on evaluating and improving the
training of navigators using eye tracking data and [23] suggested using (stationary)
eye tracking to determine or monitor the level of fatigue in the boat driver with the
purpose of enhancing situation awareness. [15] used eye tracking data examination
to suggest improvement of usability design on the ships’ bridge layout and in the
software’s graphical user interface on a maritime navigation display. [14] also in-
vestigated eye tracking data in the pursuit of a recommendable optimal visual scan
pattern for navigators aiming to mitigate the mental workload needed to monitor
the increasing amount of technology used at the maritime ship bridge.

[11] performed a somewhat rare example of an investigation using eye tracking
during actual, real life navigation. They investigated gaze behavior data from 16
experienced and novice boat drivers during high speed navigation and concluded
that novices looked more at objects closer to the boat while experts looked more at
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Figure 3.2: Tobii reye tracking glasses.Photo: FORCE Technology 2018

things far from the boat. Also, novice boat drivers were more focused on electronic
displays, while the experts were focused mostly outside the boat and “further used
the paper-based sea chart to a larger extent than the novice drivers” (p 277).

The methodology of using eye tracking devices in real life maritime situations is
not often seen, thus making this study quite unique.

Eye tracking technology applied in this investigation

The eye tracking data was collected using Tobii Pro Glasses 2 ([1]), which is a
lightweight wearable technology. It consists of two units: a head unit (the glasses)
connected via a HDMI cable to a belt clip recorder unit.

The head unit has a scene camera recording the wearer’s front view (including
audio) and the frame has infrared illuminators and sensors installed thereby using the
eye tracking technique Corneal reflection (dark pupil). The belt clip unit holds a SD
card for recording data, operates on rechargeable batteries and is Wi-Fi controlled
through PC-based software (in this case iMotions). This setup makes it very easy
for the person wearing the eye trackers to freely move around on the ship and due
to the non-invasive design, most subjects easily forget they are even wearing them
while performing their job. Additional specifications are shown in the table below,
adapted from the Tobii Pro Glasses 2 User’s Manual (2018, p. 40).

Based on the recording from the scene camera and the associated eye tracking
data, the iMotions software (current version 7.1) produces a video showing what was
in the wearer’s field of view during the recording (a 1st person perspective replay),
including a graphical overlay: A yellow dot indicating where in the field of view the
person was looking at any given time. The software can be set to illustrate fixations
by either increasing size of the yellow dot or color change hereof. A fixation is defined
as a period (100 ms or more) in which the person’s eyes are locked toward a specific
object (or location) in the field of view. Fixations are excellent measures of visual
attention. Fixations are directly related to cognitive processing [17] and during a
fixation, the person is analyzing and interpreting information from the object or
area of focus [22].



3.3. SCOPE OF THIS INVESTIGATION 15

Figure 3.3: Eye tracking example.

The image in Figure 3.3, shows a single frame from replay of an eye tracking
recording (MF Højestene). The yellow dot is the location of the navigator’s fixation
and the yellow line illustrates eye movements faster than 100 ms, referred to as
saccades.

3.3 Scope of this investigation

In the course of using the Tobiir eye-tracking glasses on a bridge and iMotionr

software, the following limitations appeared

• Objects at the Radar of ECDIS screens are tiny compared to outside objects
and the fixation circle is too big to distinguish which object on a screen is
catching attention

• Very high differences in light intensity from outside to instrument screens

• Slight drift between direction of view indicated by the eye-tracking and actual
direction

• The Tobii glass camera is excellent for daylight conditions but is not sensitive
enough for dusk or night conditions.

These technical limitations with eye tracking measurements restricted the scope
of this investigation, and it was necessary to limit the scope to simply compare eye-
tracking fixations on objects at sea with classification of the same objects made by
the computer-vision based part of electronic outlook. Observation with eye-tracking
was limited to daylight conditions.

The electronic outlook then focus on object detection and classification in day-
light images. Machine learning techniques are explained and the quality of object
recognition at sea is assessed from training and validation images. It is discussed
why the usual softmax, precision and recall measures from deep-learning are not
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sufficient as quality indicators for navigation purposes. Instead, we show how tra-
ditional statistical measures (true and false, positives and negatives) are employed
at an object level and provide useful quality indicators for use in navigation.

This study has not employed means to disclose how the navigator interprets
what he sees. The eye tracking glasses can determine where the navigator has had
visual focus. The detailed recognition of objects and their behaviour are therefore
not in the scope of this investigation. The study does not reflect on which actions
the navigator could or should make.



Chapter 4

Electronic outlook

This chapter describes the instrument platform used for electronic outlook and it
presents images available from the camera suite in different spectral ranges selected
for the study.

The electronic outlook system in this comparison consists of 5 cameras, an
FMCW radar, an AIS receiver, a GPS unit and a 6 degrees of freedom inertial
measurement unit.

Figure 4.1: Sketch of the sensor platform. The five camera houses are looking
forward in the ships heading. Camera units, CW-FM radar and GPS receiver plus
IMU are fixed on the platform.

The vision system comprises,

• 2 color cameras (JAI GO-5000C), 5M pixel, resolution is 2560 x 2048, 12 bit,
lens 55 HFOV. A polarizing filter is added.

• 2 monochrome cameras (JAI GO-5000M), 5M pixel, resolution is 2560 x 2048,
12 bit, lens 55 HFOV. NIR low pass filter (800-1000 nm can be added).

• 1 infrared LWIR camera, uncooled micro bolometer sensor (Teledyne Dalsa
Calibir 640), resolution 640 x 480, 14 bit, lens has 90 deg HFOV.

The equipment is mounted on a forward facing stand on board the ferries. Object
detection and classification algorithms are run as post-processing of the images. The
platform is sketched in Fig. 4.1. The color and monochrome cameras have an overlap
of 4 degrees. Fig. 4.2 shows the instrument platform mounted on a ferry in a narrow
passage in the southern Funen archipelago.

17
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Figure 4.2: Southern Funen archipelago. Sensor platform mounted beyond wheel-
house / ship’s bridge.

4.1 Camera comparisons

Measurements were made to assess camera properties in daylight, at dusk and at
late evening to assess image properties in conditions of normal, low and very low
ambient illumination.

Daylight

Daylight conditions depicted by RGB camera recordings and monochrome NIR range
photos are shown in Figures 4.3 and 4.4. High contrast is a visual challenge as
visual images have 8 bit depth only, but the full 12 bit resolution of the cameras is
maintained in the subsequent image analysis.

Figure 4.3: RGB camera with polarizing filters. South Funen archipelago. Ambient
condition is daylight and good visibility
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Figure 4.4: Monochrome camera with NIR filter 800 − 1000nm. South Funen
archipelago. Ambient condition is daylight and good visibility

Figure 4.5: LWIR camera 8 − 14µm. South Funen archipelago. Ambient condition
is daylight and good visibility

The LWIR image in Figure 4.5 is recorded at the same instant as the RGB and
NIR images. The 14 bit resolution of this camera allows a temperature resolution of
objects of 0.006 deg. When visualizing the LWIR image, we use range compression
to zoom in on the temperature range that is relevant for the image. The LWIR is
not sensitive to sun reflections in the water or in clouds. As seen, several vessels
are recognizable in the LWIR image, which are less apparent in the RGB and NIR
pictures, even though the LWIR has 4 times lower horizontal resolution than the
JAI cameras.

Dusk - 26 min after sunset

Figures 4.6, 4.7 and 4.8, show the RGB, NIR and LWIR images observed 26 min
after Almanac sunset. Navigation lights on the approaching ferry are clearly visible
on in the NIR image, and the heat silhouette very clearly visible in the LWIR image.
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Disturbed by the glare from sunset, the RGB image will need contrast enhancement
to distinguish the navigation lights on the approaching ferry.

Figure 4.6: RGB camera with polarizing filters. South Funen archipelago at dusk

Figure 4.7: Monochrome with NIR filter. South Funen archipelago at dusk

Dark - 60 min after sunset

Measurements were made with Cameras mounted with parallel optical axes, pointing
forward in own vessel. Figure 4.10 shows crossing traffic, a ferry with illumination
along the vessel and from cabins, saloons and deck, and a freighter behind with two
mast lights and sparse deck illumination. The cargo vessel’s lights could be mistaken
for land/street illumination. Images from Long Wave Infrared Cameras, shown in
Figure 4.9, are not sensitive to visual light, but only to surface temperatures of
observed objects, and both of the crossing vessels are clearly distinguishable. The
LWIR cameras have different horizontal field of view (HFOV), 45deg for the FLIR
camera and 90deg for the Teledyne Dalsa. While the LWIR cameras clearly show
signatures of other vessels, the red-white-green colour codes of navigation lights
provide essential information that is visible in the RGB images, but not in the
LWIR images.
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Figure 4.8: LWIR camera, south Funen archipelago at dusk

(a) Teledyne-DALSA LWIR (90◦HFOV ) (b) FLIR LWIR (30◦HFOV )

Figure 4.9: LWIR camera recordings, 640 × 480 pixels. Oresund toward Elsinore.
Ambient condition: dark but good visibility one hour after sunset
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Figure 4.10: RGB image. Deck and cabin lights are clearly visible on the crossing
ferry, a cargo vessel behind it is somewhat difficult to distinguish from lights at the
coast line. Strait of Oresund toward Elsinore. One hour after sunset



Chapter 5

Object detection and classification

This chapter gives a brief overview of object detection and classification techniques
employed in this study and provides a description of the choices made for sensor
system design. We start by introducing the object detection methods and related
works. Then we introduce learning-based object detection algorithm we use and the
training data captured with the on-board camera equipment. Finally, we discuss
the results and performance of our implementation.

5.1 Image-based Object Detection

Object detection and classification is the task of determining what is present in a
given image. There can be multiple ways to implement a detector and classifier, and
what method to use depends on the specific use case. The relevant types of object
detection and classification outputs are described below to give an understanding of
what results can be obtained from images:

Image Classification To determine what one or more classes that an image can
belong to. Often, the result of image classification is a probability of the image
belonging to certain classes from a predefined list. In a maritime environment,
classes such as ’ferry’, ’sailboat’, ’buoy’, etc. would be obvious examples. It is
however not directly possible to tell what specifically in the image that caused
the classification result.

Object localization To localize an object in a specific image with, e.g., a bounding
box. With object localization, it is possible to tell where in the image a specific
object is located as well as an approximation of its relative size in the image.
In other words, we can get a coordinate of the position of the object in the
image.

Semantic segmentation Is a pixel-wise segmentation of one or more objects in
the image. This will provide more exact information, as only the pixels that
belong to a certain object is classified. Consequently, it is possible to not only
get the position of the object in the image, but also a good approximation of
the object shape.

23
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Instance segmentation Is similar to the semantic segmentation, but objects of
the same class will be classified as different instances. This is advantageous
when two of the same class are partially overlapping, they will be segmented
separately. This enables the possibility to count the number of objects belong-
ing to a class or prepares the base for tracking them individually in a series of
images.

Many proposed solutions exist for all of the above-mentioned outputs. Recently,
data-driven solutions, such as deep neural networks, have proved to give robust and
accurate results but these require large sets of annotated training data. Annotations
often have to be done manually, and especially pixel-wise annotations for semantic
and instance segmentation requires accurate and therefore cumbersome annotation.
Techniques that require less or no prior data also exist but tend are less general
than a learning-based approach. Since our system is operating near the coast, many
types and sizes of boats and ship can appear in the images. Additionally, we can
have both land and water as background. The following section provides an outline
of some challenges for maritime environments along with related prior work.

5.2 Related work

Object detection, classification and tracking in a maritime environment is a well-
explored area, and several previous works address this. Challenges include waves
that can cause a rapid change in the frame of reference [10], sudden change of
illumination and unwanted reflections from the water [5], and the possibility of poor
weather conditions that reduce the range of sight. The survey papers [24], [21]
mention a range of methods that deal with detection and classification in images of
maritime environments. Horizon line detection and background subtraction appears
to be effective for object detection [34], [32], [25]. Object tracking was shown by [7] to
be efficient when using a scale-invariant feature transform (SIFT). Utilizing infrared
and visible light images was analyzed in [24], and also thermal imaging seems to
have the ability to provide information about objects on the water [19]. With recent
progress in deep learning based segmentation and classification methods, visible
light images is an obvious choice for object detection. Training data is available in
the ImageNet [8] picture base, but images already exists and can provide a base for
training. For specifically maritime environments [18] and [6] show that deep learning
based methods are effective and annotated data from the maritime environment exist
from harbour of Singapore [24]. This study has used training data collected from
observations on board ferries in Danish coastal waters.

In our study, [30] investigated different networks for machine learning, including
R-CNN and Fast R-CNN, which do not employ segmentation. The classification
was of modest accuracy in general, but objects with many instances in the training
data set, in this case buoys in danish coastal areas, performed much better than
average precision and recurrence. False positives observed by machine learning, e.g.
confusing a cloud for a sail, could be remedied by combining deep learning with
methods from classical computer vision. These were investigated in [25].
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Figure 5.1: Mask R-CNN network. (From:
https://medium.com/@jonathan hui/image-segmentation-with-mask-r-cnn-
ebe6d793272 )

5.3 Mask R-CNN detection and classification

Based on results of eye-tracking measurements, we decided to use the Mask R-
CNN [16] on visible light images, which is able to perform pixel-wise segmentation
of several classes. This section will give an introduction to the specific architecture
of the Mask R-CNN implementation utilized for the visible light images. Objects
that are within visual range of the cameras are detected and classified using a Con-
volutional Neural Network (CNN), also referred to as deep learning technology. The
network architecture employed in this study to detect different objects in the mar-
itime environment is Mask R-CNN [16], which has the novelty of not only being
able to recognize and detect (bounding box) of several classes, but is also able to
segment all instances of each one and create the corresponding binary mask at a
pixel level. Mask R-CNN is the culmination of an architectural model that started
with a Region-Based Convolutional Neural Network (RCNN) [13], followed by Fast-
RCNN [12] and then Faster-RCNN [26]. The Mask R-CNN architecture, shown in
Figure 5.1, was employed in this study. It has branch at the end of the CNN that
predicts mask-segmentation at a pixel-to-pixel level. Misalignment and loss of data
are avoided, and pixel level precision is obtained by a RoI-Align layer that uses
bi-linear interpolation to remove quantization at the region of interest boundaries.

5.4 Dataset

In this study object detection is currently purely based on image data, so the fol-
lowing will give a basic description of the digital images produced by our vision
system. We found that existing maritime image data-sets are not sufficient to cover
the scenarios we encounter in our recordings. Consequently, we choose to manually
label a small set of images to refine the Mask R-CNN. The annotation process will
also be mentioned in this section.
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Image Format

We define a digital image as a 2-dimensional array of discrete values representing
the pixels in the image. The number of horizontal and vertical pixels in the image
is referred to as the resolution of the image and is a determining factor of how
detailed the information of a given scene can be stored in an image. The amount
of information stored per pixel is referred to as the bit-depth. In a grayscale image,
a pixel commonly contains 8 bits of information which means that each pixel can
take 256 levels of intensity. A higher bit depth allows storing more information in
each pixel, as for example, a higher dynamic range. An image can consist of one or
more channels, and an example of this is a colour image which contains 3 channels:
red, green and blue respectively. This means that a colour image takes more storage
space and consequently is slower to process than a grayscale image of the same
resolution. On the other hand, it contains more information which can be valuable
for some applications. In our case, the resolution the colour images are a quarter of
the monochrome images, because they need to be GRBG demosaiced to produce a
colour image from their raw format.

To be able to accurately detect objects in the images we acquire with our system,
we need to train our model with similar data. We do this by manually annotating
a set of images, which will be further described in the following.

Instance Labeling

A subset of images are hand-annotated and used for both network refinement and to
test the performance of the detection algorithm. The subset is labelled for instance
segmentation so that pixels belonging to each object in the image is labelled sepa-
rately with a polygon shape. Manually labelling images for instance segmentation
is a time consuming and to ease the process we use a free web-based annotation tool
LabelMe [29] to create polygons. Figure 5.2 shows the LabelMe interface where the
user can separately draw polygons for each object as desired. When the user enters
the interface a selected image from the repository will be displayed in the centre.
The user may label object of interest by clicking on ’create polygon’ and selecting
control points along the boundary of the object. Each object is assigned a class by
naming them appropriately and an image can contain several classes and objects.

The process of labeling is rather time-consuming when segmentation is desired,
because the exact shape of each object has to be marked. Annotation using only a
bounding box around objects is much faster. The simpler bounding box approach for
labeling can be used for detection and classification, albeit with a different network.

Data

The training data consist of images captured with our onboard RGB camera setup
and additional images were acquired with a DSLR camera on separate trips. Images
from internet sources are also added to the training data. All images are manually
labelled using the previously mentioned technique.
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Figure 5.2: Screenshot of the LabelMe interface. The green polygons represent the
boundary of the labelled pixels for a boat and two buoys respectively.

The validation set only consists of images from the onboard RGB camera setup,
as we wish to evaluate the performance of the object detection on our on-board
camera system. In summary, the labelled images for the dataset consists of:

Data source Number of images
On-board RGB camera setup 330
On-board DSLR 179
Internet source 8
In total 517

The 517 images are annotated with two classes: buoy and ship. A total of 600
buoys and 639 ship instances are annotated across the dataset. Examples of the
images labelled for instance segmentation are shown in Figure 5.3.

5.5 Training

We split the onboard RGB images so that 406 images are used for training and
111 images are used for validation. To produce additional training data we use the
following data augmentation on each of the on-board RGB training images:

Image rotation Randomly rotating the images randomly between −25 deg and
25 deg.

Image flip Flipping images horizontally (mirroring).
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Figure 5.3: Sample images from our labelled dataset. The first row shows the images
captured by our RGB cameras. The second row shows the masks of the labelled
pixels, where the two classes are shown in red and blue respectively. Note that the
instances within a class are labelled individually, despite they are visualized with
the same colour.

(a) Original (b) Rotated (c) Flipped
(d) Flip + Ro-
tate (e) Added noise

Figure 5.4: Examples of data augmentation on the training set. The original train-
ing image is shown on the left and the next 4 images show the output after data
augmentation.

Image flipping and rotating Combining the flipping and rotation.

Noise addition A colour replaces the image pixel for every 50 pixels.

The augmentation is visualized in Figure 5.4 and increases the dataset with an
additional 5 × 406 images. Each of these images are cropped into 16 regions in a
4 × 4 grid. After this operation, the total increase of the dataset is 16 × 5 × 406
images, resulting in 16 × 5 × 406 + 406 × 5 = 34510 images.

The Mask R-CNN has been pre-trained using the weights from the COCO
dataset [20] and we fine-tune the network to detect the two classes provided in
our training data: buoy and ship. The network was trained for 40 epochs on the
first 4 layers (classificatory), then another 60 epochs for the rest of the layers and
finally 80 epochs for the whole network. The learning rate was set to 0.0003 and
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the momentum was 0.9. The total training time took around 24 hours on a GeForce
GTX 1080 GPU.

5.6 Performance

We evaluate the performance of our network using the validation images consisting of
only acquisitions from the on-board RGB camera system. With the above-mentioned
training procedure, we obtain a mean average precision (mAP) of 62.74%. The 0.5-
mAP is used which means that intersections of regions less than 50% are not included
in the calculation.

For our study, we work with two stages of object detection. First of all, to detect
and classify a relevant object in the image. Secondly, how accurately it is segmented.
To discuss the results, we use the following terminology:

True positive Object present in the frame and detected.

False positive A detection occurs in the frame but without the presence of an
object.

True negative Object not present in the frame and no detection occurs.

False negative Object present in the frame and not detected.

For our application, we need a good overall localization of the object in the image,
but not necessarily a precise segmentation border around the object. Figure 5.5
shows sample predictions of the network and with visual inspection, we conclude
that segmentation of the objects are acceptable in most cases where a true positive
detection occurs.

We also wish to investigate to what extent the network is detecting the objects it
is supposed to find, the occurrence of false positives and false classifications. To do
this we note down the comparison of the reference (ground truth) annotations with
the predictions provided by the network. The precision of the segmentation mask
is omitted here, so it is only the object classification which is reflected in this part
of the results. Note that our validation set consists of annotated images with one
or more objects, but also images without objects are included in the set. Table 5.1
shows the results of the object detections and classifications. We consider the two
object classes buoy and ship and divide the detections in a near and far field. The
border between near and far is determined by human inspection and is therefore not
a measurable distance.

The results show that the near-field object detections are working the best, 100%
of the buoys and 100% ships are found and 0 buoys and ships misclassified. In the
far field, only approximately 33% of the buoys and 66% of the ships are detected.
Mis-classification is present at a far distance, where 1 buoy is detected as a ship,
while 0 ships are detected as a buoy. A total of 6 buoys and 34 ships were detected in
the images without actually being present. Note that these numbers were originally
a bit higher, as our own ship is visible in some of our validation images, see examples
in Figure 5.6. False detections caused by our own ship can be omitted as they can
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Figure 5.5: Example outputs from the Mask R-CNN network fine-tuned with our
training data. The predicted instance segmentations are visualized on top of the
input image.

Detected

B S ∼B ∼S

R
ef

er
en

ce

near
B 47 0 0 -

S 0 83 - 0

far
B 27 1 54 -

S 0 51 - 0

none
∼B 6 - -

∼S 34 - -

Table 5.1: Performance of the object detection. The detected objects are compared
to the reference objects from the validation set. The number of detections (and no
detections indicated with ∼) is noted for the two types of objects: buoy (B) and
ship (S). The buoy and ship detections are divided into two categories: near and
far.
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Figure 5.6: Examples of false positives. Some origin from sea reflections and others
from clouds. Combination with classical methods could be one way to avoid such
artifacts.

easily be identified as false positives since they will occur at a fixed location in all
images.

The remaining part of the false positives are most often detections on the water
where a piece of land far away is detected as a ship or in the region above the
horizon line, where clouds are detected as ships. Figure 5.6 shows examples of the
false positive detections. False positives in the cloud region could be removed by
detecting the horizon in the image. Additionally, it would be an advantage to add
more object classes to fully cover the objects present on the water in our image set.

The false negatives shown in Table 5.1 appear in particular when objects are far
away. In particular, these missed detection of objects at long distance is related to
the pixel area the object has in the images. Figures 5.7 and 5.8 show histograms
of missed detections, shown i blue color, and of detections, shown in red color, as
function of pixel area occupied by the object. All objects larger than 2500 pixels
are detected but are not shown in these histograms. This classification behaviour is
a consequence of the choice of network and of its training. The Figures also show
that missed detection happens in a few cases for objects of larger area in the image.
Object tracking and more robust classification methods could improve the detection,
but it should be noted that approaching objects are eventually detected as distance
to own ship decreases.

Other methods that are specialized to detect objects of very small size in images
[9], could detect a rib boat already when it occupied 5 pixels in an image and could
estimate the category when occupying 38 × 4 pixels.

Using object tracking and fusion with information from NIR and WLIR imaging
could provide additional suppression of artifacts, but this could not be included in
the scope of this study.



32 CHAPTER 5. OBJECT DETECTION AND CLASSIFICATION

Figure 5.7: Histogram of pixel area versus buoy detections.

Figure 5.8: Histogram of pixel area versus ship detections.
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Results

This chapter compares the human outlook, made by assessing the fixations de-
termined by the eye-tracking system, with object classifications made using RGB
images.

Comparison between the electronic systems outlook capabilities and the human
counterpart are hence done by looking at the instant of first observations of a given
object. The eye-tracking software gives an indication of fixation on an object when
the human lookout has been gazing at it for a certain length of time. This time is
compared to the timestamp that the Mask R-CNN indicates its first detection and
classification of the object. Figure 6.1 shows a snapshot of of eye-tracking. The
right part shows what the lookout is focusing on. The yellow line on this shows that
the eyes wanders around, which is normal. Fixation is indicated by the red circle.
The Electronic Outlook is illustrated in Figure 6.2.

Figure 6.1: Eye-tracking of the manual look-outs fixations. Left: Forward facing
camera used as reference in the analysis. Right: Eye-tracking result. The yellow
spot surrounded by a thin red line indicates fixation on an object.

6.1 Temporal Comparison

This section presents an analysis of the time-wise differences between the electronic
lookout system and the human counterpart. This is achieved by timestamping the
detections of objects observed by the electronic lookout and comparing them with
fixations captured by the eye-tracking system. A comparison is done by examining
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Figure 6.2: Object detection and classification on two RGB images are shown by
highlighting the detected object and showing the bearing to detected objects.

the difference
∆tobs = tHO − tEO (6.1)

where tHO is the time that the eye-tracking system indicates the first fixation on
an object, and tEO is the time that the electronic outlook first detects and classifies
the same object. Figure 6.3 shows a histogram of ∆tobs. Figure 6.4 shows the

Figure 6.3: Histogram of time differences between observations done by the human
lookout and the electronic lookout (calculated by (6.1)). The impossed normal
distribution has the following parameters: µ = 23.9 s and σ = 41.0 s. This means
that electronic outlook classifies objects earlier than the human eye fixation by 24
seconds in average.

time difference ∆tobs histogram for ships and buoys separately. A positive value of



6.1. TEMPORAL COMPARISON 35

time difference means that electronic outlook classifies an object earlier than the
navigator has a fixation on it.

Figure 6.4: Histogram of time differences between observations done by the human
lookout and the electronic lookout (calculated by (6.1)). In mean, the electronic
outlook detects and classifies objects 30 s faster for ships and 11 s for buoys, com-
pared to the human eye fixation. It is expected that the negative outliers could be
avoided by improving the neural network.

The time elapsed between the instant of detection of an object and the instant
when this object passes behind the RGB camera’s field of view is defined as the time
to react. Two time differences are defined to analyse this characteristic,

∆tHO = tpass − tHO (6.2)

∆tEO = tpass − tEO (6.3)

where tpass is defined as the time instant when the object passes behind the RGB
cameras’ field of view.

Figure 6.5 shows a scatter plot of ∆tHO vs. ∆tEO. It is seen that electronic
outlook allows more time to react. Figure 6.6 shows the same results but zoomed
in at the range 0 − 200 s before passing own vessel. This range covers the majority
of the measurements.
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Figure 6.5: Scatter diagram of time to react. The trend line shows that time to
react is longer with electronic outlook than time to react from a fixation.

Figure 6.6: Scatter diagram of time to react. The plot shows the range 0 − 200 s.
Again, the trend line shows that time to react is longer with electronic outlook than
time to react from a fixation.
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Discussion

Since the ship has Radar and AIS sensors on board, the detection of objects that are
visible to Radar or have AIS transmitters installed, could be done quite accurately.
However, several objects are not visible on Radar, such as leisure surf borders and sea
kayaks, boats without Radar reflector and AIS transmitter, and even containers that
were accidentally dropped over board. Electronic outlook with object classification
is therefore very important for the ship so that it acts in a safe manner also when non
Radar detectable objects are in the area. Thus, a combination of object positions
from these sensors and the Mask R-CNN architecture could increase the performance
and the results. An example of this is by using the detected objects positions from
the radar as possible region proposals in the network.

Further results will therefore fuse on-board radar and AIS information to improve
the performance of the vision system. This will require calibration that enables
Radar and AIS data to be studied from their respective coordinate systems into e.g.
the pixel-coordinates of the input images to the CNN. This data could be used for
region proposal in the network and be particularly useful in situations with reduced
visibility of the cameras.

Coverage of this analysis

Some kinds of behaviour are related to look-out, which are not captured by only
observing the areas of fixtures with eye tracking glasses, but require further inter-
pretation:

• General visual observation (watching) of nothing in particular, but often fo-
cused on the direction of the vessel and abeam/passed in relation to the pro-
gression of the navigation.

• Exogenous-oriented attention in relation to above item 1 – something turns up.
This can include comparison or verification with information from instruments
e.g. radar or AIS.

• Endogenous-driven observation of objects from other sources – for instance sea
charts (buoys), radar and AIS (vessels) – expected to be observable.

Such interpretation of the situation, which is part of a situational awareness
scenario, was not within the scope of this study.
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Repeated observations to determine if there is a risk of collision and in this
connection take countermeasures is visible in the eye-tracking measurements, and
so is repeated observations to determine if countermeasures have the desired effect,
but such awareness behaviours of the navigator are also outside the scope of the
object detection and classification presented in this report.

Electronic outlook as decision support

Look-out is just one among several tasks of the navigator on the bridge. Other tasks
include: Observation of the condition of engines and systems; Handling of cargo and
passengers; Safety-related routines; Communication internally on board the vessel
and with external parties; Management of staff and other administrative tasks; QA
and documentation tasks; Handling of safety-critical situations on board.

With several other tasks to care for, which might sometimes distract the naviga-
tor, it is believed that electronic outlook could serve as a fifth sense decision support
for the navigator and perhaps make it possible to have temporally unmanned bridge
in conditions with little to no other traffic.
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Conclusions

This study compared human outlook with electronic. Using instance of fixation
of eye-tracking glasses with instance of electronic outlook by cameras and mask-
RCNN classification, the study provided statistics for a comparison of instant of
detection/fixation and time to object passes out of camera’s field of view, which is
close to passage of own ship and hence one of the essential parameters for object
detection.

The performance of the Mask-RCNN was evaluated on the validation set of an-
notated RGB images. Object detection performance showed a satisfactory detection
probability for objects larger than 400-500 pixels in an image, a quantification that
is useful for camera system design for electronic outlook.

Some outliers were found to exist in form of false detections. A single instance of
missed detections was also also found in the validation data. Robustification of the
classifiers will be needed to obtain the required dependability of electronic outlook
and is a topic of further research, and techniques could include object tracking
and combination of classical image processing with the deep learning methods for
classification.

The situational awareness elements in a comparison were not covered but will
be the subject of further research.

The main findings were:

• Eye-tracking glasses were found useful to show fixations on objects at sea in
daylight conditions.

• The computer-vision algorithms detects objects in parallel, the human does so
sequentially, and the computer classifies objects in average 24 sec faster than
the navigator has a fixation on the object. The deep learning algorithm trained
in this study should, however, be improved to achieve better performance in
some situations.

• The time between object detection and passage of own ship is adequate for
making navigation decisions with both human and electronic outlook.

• Low-light conditions (dusk and night) are effectively dealt with by Long Wave
InfraRed (LWIR) camera technology. LWIR shows objects as equally visible
at day and night.
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• Colour information from cameras is necessary to assist decision support and
electronic navigation.

• A system for electronic outlook should employ sensor and data fusion with
radar, AIS and ECDIS.

• Decision support based on electronic outlook should include object tracking
and situation awareness techniques.

• Quality assurance and approval of machine learning algorithms for object clas-
sification at sea has unsolved issues. A standard vocabulary ought be available
for objects at sea, and publicly available databases with annotated images from
traffic in both open seas, near coast areas and rivers should be available in or-
der for authorities to assess quality or approve navigation support based on
machine learning methods.
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